Much Ado About Nothing

07/03/2017

A rather long time ago, I wrote a blog entry on branchless equivalents of simple functions such as sex, abs, min, max. The Sing EXtension instruction propagates the sign bit in the upper bits, and is typically used in the promotion of, say, a 16 bits signed value into a 32 bits variable.

But this time, I needed something a bit different: I only wanted the sign-extended part. Could I do much better than last time? Turns out, the compiler has a mind of its own.

Read the rest of this entry »


Cleaning Scans

21/02/2017

Scanning documents or books without expensive hardware and commercial software can be tricky. This week, I give you the script I use to clean up a scanned image (and eventually assemble many of them into a single PDF document).

scanner

Read the rest of this entry »


Choosing Random Files

14/02/2017

This week, something short. To run tests, I needed a selection of WAV files. Fortunately for me, I’ve got literally thousands of FLAC files lying around on my computer—yes, I listen to music when I code. So I wrote a simple script that randomly chooses a number of file from a directory tree (and not a single directory) and transcode them from FLAC to WAV. Also very fortunately for me, Bash and the various GNU/Linux utilities make writing a script for this rather easy.

dice

Read the rest of this entry »


8-bit Audio Companding

07/02/2017

Computationally inexpensive sound compression is always difficult, at least if you want some quality. One could think, for example, that taking the 8 most significant bits of 16 bits will give us 2:1 (lossy) compression but without too much loss. However, cutting the 8 least significant bits leads to noticeable hissing. However, we do not have to compress linearly, we can apply some transformation, say, vaguely exponential to reconstruct the sound.

ssound-blocks

That’s the idea behind μ-law encoding, or “logarithmic companding”. Instead of quantizing uniformly, we have large (original) values widely spaced but small (original) value, the assumption being that the signal variation is small when the amplitude is small and large when the amplitude is great. ITU standard G.711 proposes the following table:

Read the rest of this entry »


Stretching samples

31/01/2017

So for an experiment I ended up needing conversions between 8 bits and 16 bits samples. To upscale an 8 bit sample to 16 bits, it is not enough to simply shift it by 8 bits (or multiply it by 256, same difference) because the largest value you get isn’t 65535 but merely 65280. Fortunately, stretching correctly from 8 bit to 16 bit isn’t too difficult, even quite straightforward.

stretching-snorlax

Read the rest of this entry »


Whatever sums your floats

24/01/2017

While flipping the pages of a “Win this interview” book—just being curious, not looking for a new job—I saw this seemingly simple question: how would you compute the sum of a series of floats contained in a array? The book proceeded with the simple, obvious answer. But… is it that obvious?

Read the rest of this entry »


Strings in C++ Switch/Case statements

10/01/2017

Something that used to bug me—used to, because I am so accustomed to work around it that I rarely notice the problem—is that in neither C nor C++ you can use strings (const char * or std::string) in switch/case statement. Indeed, the switch/case statement works only on integral values (an enum, an integral type such as char and int, or an object type with implicit cast to an integral type). But strings aren’t of integral types!

In pure C, we’re pretty much done for. The C preprocessor is too weak to help us built compile-time expression out of strings (or, more exactly, const char *), and there’sn’t much else in the language to help us. However, things are a bit different in C++.

Read the rest of this entry »


Pretty Printing a Tree in a Terminal

06/12/2016

More often than I’d like, simple tasks turn out to be not that simple. For example, displaying (beautifully) a binary tree for debugging purpose in a terminal. Of course, one could still use lots of parentheses, but that does not lend itself to a very fast assessment of the tree. We could, however, use box drawing characters, as in DOS’s goode olde tymes, since they’re now part of the Unicode standard.

tree-01

Read the rest of this entry »


Tweet time!

22/11/2016

I’ve been using twitter for about five years, and I wondered if my use of it changed over time, and more precisely, linked to my wake/sleep cycle. That’s fortunately kind of simple to check because you can simply request your whole Twitter archive, delivered as a plain CSV File! Let’s see how we can juice it.

Read the rest of this entry »


Square Roots (Part V)

15/11/2016

Last week we examined the complexity of obtaining k in the decomposition n=2^k+b for some integer n. This week, we’ll have a look at how we can use it to speed-up square root extraction. Recall, we’re interested in k because

2^k \leqslant 2^k+b < 2^{k+1},

with 0 \leqslant b < 2^k, which allows us to get easy bounds on \sqrt{n}. Better, we also have that

\sqrt{2^k} \leqslant \sqrt{2^k+b} \leqslant \sqrt{2^{k+1}},

and we know how to compute \sqrt{2^k}=2\frac{k}{2} (somewhat efficiently! Let’s combine all this and see how it speeds up things.

Read the rest of this entry »