Powers of Ten (so to speak)


I am not sure if you are old enough to remember the 1977 IBM movie Powers of Ten (trippy version, without narration) [also at the IMDB and wikipedia], but that’s a movie that sure put things in perspective. Thinking in terms of powers of ten helps me sort things out when I am considering a design problem. Thinking of the scale of a problem in terms of physical scale is a good way to assess its true importance for a project. Sometimes the problem is the one to solve, sometimes, it is not. It’s not because a problem is fun, enticing, or challenging, that it has to be solved optimally right away because, in the correct context, considering its true scale, it may not be as important as first thought.


Maybe comparing problems’ scales to powers of ten in the physical realm helps understanding where to put your efforts. So here are the different scales and what I think they should contain:

Read the rest of this entry »

The True Cost of Calls


The cost of virtual functions is often invoked as a reason to C++’s poor performance compared to other languages, especially C. This is an enduring myth that, like most myths, have always bugged me. C++ myths are propagated by individuals that did not know C++ very well, tried it one weekend in 1996, used a bad compiler, knew nothing about optimization switches, and peremptorily declared C++ as fundamentally broken. Well, I must agree that C++ compilers in the mid-90s weren’t all that hot, but in the last fifteen years, a lot have been done. Compilers are now rather good at generating efficient C++ code.

However, the cost of calls, whether or not they are virtual, is not dominated by the the call itself (getting the address to jump to and jumping) but by everything else surrounding the call, like the stack setup and argument passing. Let us debunk that myth by looking at what types of calls are available in C and C++, how they translate to machine code, and see how faster or slower they are relative to each other.

Read the rest of this entry »