The big picture (Colorspaces VIII)

29/05/2018

A few posts ago, I said that while the colorspaces looked random, they really weren’t, and that there was underlying order. The structure cannot be easily seen just by looking at the numbers themselves, but at how the numbers are obtained.

The story begins sometimes in the 1950s, were transmitting color TV images started to be the next logical step. Someone (not sure who was first, but it may have been Valensi, in the 1930s) proposed that TV color should be encoded in a perceptually friendly way [1]. It was known for a while that the retina had four types of sensors, rods for brightness with no color information, and three other types corresponding to red, green, and blue, but also that in, and beyond the retina, information travels as brightness, yellow-blue and red-green differences [2,3].

Read the rest of this entry »


YCrCb and friends (Colorspaces VII)

22/05/2018

JPEG, MPEG, and other compression algorithms all use a colorspace other than RGB. The colorspaces they use are such that most of the perceptually useful information is concentrated into one component, essentially brightness, and the color information diffused into the remaining components. Furthermore, we hope that we can heavily quantize the color information. JPEG separates the image into brightness and two other components: brightness is coded full resolution, but the two other components are downsampled 4:1. Yet, it’s not visible in the reconstructed image, because our eyes are good at brightness, but not at chrominance.

But that’s not a surprise. All the colorspaces we’ve seen so far do this, and (are believed to) have the same properties, grosso modo.

Read the rest of this entry »